BEACON and AMBER researchers discover new solution to problem plastic: home compostable biodegradable plastic

Home \ News \ BEACON and AMBER researchers discover new solution to problem plastic: home compostable biodegradable plastic

Researchers at BEACON Bioeconomy Research Centre, the Science Foundation Ireland (SFI) funded Research Centre led by University College Dublin and AMBER, the SFI Research Centre for materials science at Trinity College Dublin have discovered a blend of biodegradable plastic that completely degrades under typical home-composting conditions. Their research was published today in the prestigious American Chemical Society journal Environmental Science & Technology.

Of the hundreds of millions of plastic bottles, films and cartons produced everyday in the world, it is estimated that fewer than 15% end up being recycled, with most destined for landfills or littering our environment. Ireland is not immune to this problem with more than 80% of Irish coastal areas and inland waterways polluted with plastic litter, causing issues for people and wildlife. Plastic waste ends up in our environment as a result of poor recycling options. One potential solution to this problem is the introduction of biodegradable plastics. Biodegradable plastics do exist and offer new waste prevention and management options which has the potential to fight against litter and environmental damage but until now no one had studied the conditions under which biodegradable plastics decompose.

The research was a collaboration between Professor Kevin O’Connor, BEACON and UCD’s School of Biomolecular & Biomedical Science, Dr Ramesh Babu AMBER Investigator, and European collaborators on EU funded projects (SYNPOL and P4SB). The collaborative team studied 15 different biodegradable plastics and mixtures of these plastics to see which had the most potential to biodegrade across a range of different environments – including standard home composting and industrial composting facilities where current brown bin material are taken. The research team tested blends of biodegradable plastics because often plastic packaging is made of a blend of plastics. They found that blends of biodegradable plastics can create new possibilities for managing plastic waste.

Polylactic acid (PLA) is one of the well adopted biodegradable plastics on the market, but it requires high temperatures for breakdown and is not home-compostable. But surprisingly, a blend of PLA and polycaprolactone (PCL) degraded completely under typical home-composting conditions.

Professor Kevin O’Connor, BEACON Bioeconomy Research Centre and UCD’s School of Biomolecular & Biomedical Science, said: “Imagine putting your waste plastic packaging into a household composting bin that breaks down the plastic and produces compost for your garden or into your brown bin so waste collection companies are able to mix plastic with unavoidable food waste and produce biogas to run their fleet or power your home, that’s the future this study suggests.

Dr Ramesh Babu, AMBER and TCD’s School of Physics, said: “Going forward we will see massive shift in use of biodegradable polymers and our research opens up new and exciting possibilities that biodegradable plastics offer to society. We have shown for the first time that you can blend plastics together to make them more biodegradable but still keeping the strength and performance of the plastic. This opens up huge opportunities to create novel sustainable plastics that perform in multiple positive ways for society.

Dr Tanja Narancic, UCD’s School of Biomolecular & Biomedical Science and BEACON, a co-author on the publication said “Apart from providing opportunities to return carbon to soil as compost and to create clean energy (biogas), biodegradable plastic can be managed with other organic waste, rather than separated, making management easier.”

This research establishes new possibilities for waste management because if such biodegradable plastics were introduced as packaging and collected in the standard household brown bin this disposal treatment would result in their safe biodegradation and production of useful large scale by-products such as compost which can be used to grow plants, or biogas which can be used directly as fuel or upgraded to natural gas-quality biomethane, a renewable energy.

However, Professor O Connor warns that the study also found that “only two of the 15 biodegradable plastics tested, polyhydroxybutyrate (PHB) and thermoplastic starch (TPS), broke down completely under standard soil and water conditions. Therefore, biodegradable plastics are not a panacea for plastic pollution and post-consumer biodegradable plastic must be managed carefully to avoid pollution and bring benefit to society.”

Publication: “Biodegradable plastic blends create new possibilities for end of life management but they are not a panacea for plastic pollution” 

For further media information or to arrange an interview, please contact:

Dr Erin O’Rourke
Public Engagement and Communications Manager
BEACON Bioeconomy Research Centre
Erin.orourke@beaconcentre.ie
00 353 (0)1 716 2691

About BEACON

BEACON harnesses the wealth of Ireland’s natural resources on land and in the sea for the development of a sustainable circular Irish bioeconomy, enabling vibrant sustainable communities. The centre collaborates closely with industry across the agri-food, forestry, marine and fisheries sectors to convert residues and side streams created during primary production processes to higher value products (including food/feed ingredients), creating new business opportunities and new value chains, and enabling partners to diversify and increase resource efficiency. Through industry partnerships they are stimulating rural regeneration, curtailing environmental damage, extracting healthy nutritional supplements, reducing import dependency, and developing human capital.

BEACON is funded under the Science Foundation Ireland Research Centres Programme and is co-funded under the European Regional Development Fund.

For more information visit: www.beaconcentre.ie; @biobeacon

AMBER (Advanced Materials and BioEngineering Research) is a world-leading Science Foundation Ireland Research Centre, which provides a partnership between leading researchers in materials science and industry to develop new materials and devices for a range of sectors, particularly the ICT, medical devices and industrial technology sectors. The centre is hosted in Trinity College Dublin, working in collaboration with CRANN (Centre for Research on Adaptive Nanostructures and Nanodevices), the Trinity Centre for Bioengineering and with University College Cork and the Royal College of Surgeons of Ireland.

Science Foundation Ireland (SFI) is the national foundation for investment in scientific and engineering research. It funds oriented basic and applied research in the areas of science, technology, engineering, and mathematics (STEM) which promotes and assists the development and competitiveness of industry, enterprise and employment in Ireland. The Foundation also promotes and supports the study of, and engagement with STEM, and promotes an awareness and understanding of the value of STEM to society and to the growth of the economy. See www.sfi.ie.

<